Home » Anaconda Company

Tag: Anaconda Company

The future site of the Berkeley Pit in Butte, Montana as it appeared in 1952.

1955-1982: Berkeley Pit history

The Berkeley Pit in 1963, shortly after the construction of the Weed Concentrator seen below the Pit, with the city of Butte, Montana to the bottom and right in the photo.
The Berkeley Pit in 1963, shortly after the construction of the Weed Concentrator seen below the Pit, with the city of Butte, Montana to the bottom and right in the photo.

Over the active lifespan of the Berkeley, approximately 320 million tons of ore and over 700 million tons of waste rock were mined from the Pit. Put another way, “The Richest Hill on Earth” produced enough copper to pave a four-lane highway four inches thick from Butte to Salt Lake City and 30 miles beyond.

The historic Berkeley mine in Butte, Montana, where the Berkeley Pit started in 1955. Photo from the Butte-Silver Bow Archives.
The historic Berkeley mine in Butte, Montana, where the Berkeley Pit started in 1955.

In 1955, mining in Butte saw the light, literally. Excavation on what would become the Berkeley Pit, named from one of several nearby historic underground mines that the Pit would later engulf, began that year in a transition from underground to open pit mining.

A street in Meaderville, one of the Butte neighborhoods destroyed to make way for Berkeley Pit expansion between 1955 and 1982. Photo from the Butte-Silver Bow Archives.
A street in Meaderville, one of the Butte neighborhoods destroyed to make way for Berkeley Pit expansion between 1955 and 1982.

The Pit would, in the next decade, swallow Butte neighborhoods like Meaderville, Dublin Gulch, and McQueen. The transition to open pit mining, a highly industrialized form of mining, also meant fewer jobs for the city’s miners. But mining had always been the lifeblood of Butte, and so the community embraced the new mine, and there was little objection to the sacrifice of some of the city’s neighborhoods.

The Anaconda Company’s decision to begin open pit mining in Butte was not without its reasons. In 1955, copper prices were the highest they had been since the end of World War I in 1918. And the following year, 1956, would mark the highest copper price seen until 2006 (with the exception of the lone year 1974, when copper briefly spiked due to an end to price controls and the ongoing demands of the Vietnam War).

The Holy Savior church, along with several historic neighborhoods in Butte, Montana, was buried to make way for Berkeley Pit expansion. Photo from the Butte-Silver Bow Archives.
The Holy Savior church, along with several historic neighborhoods in Butte, Montana, was buried to make way for Berkeley Pit expansion.

Those high prices gave the Company a big incentive to rethink its Butte operations. The most accessible parts of the Butte hill had already been mined out. Legend has it that Marcus Daly’s original ore vein was 30% copper. That is extraordinarily rich ore, and the veins of that quality could not last- as a point of comparison, when it opened, the ore mined at the Berkeley was about 0.75% copper, and the ore being mined at Montana Resources nearby Continental Pit operation today is approximately 0.25% copper. In order to economically extract copper from lower grade ore, the Pit was born.
[nggallery id=1]

Butte, Montana, mine flooding west camp wells, shafts and area of 1960s flooding. The west camp groundwater system is monitored and maintained separately from the Berkeley Pit and connected east camp mines.

West Camp also part of mine flooding site

A timeline of the history of the West Camp portion of the greater Butte, Montana Superfund site, which is monitored and managed separately from the Berkeley Pit and connected East Camp mines.
A timeline of the history of the West Camp portion of the greater Butte, Montana Superfund site, which is monitored and managed separately from the Berkeley Pit and connected East Camp mines. Click on the image to view a larger version.

The anatomy of the thousands of miles of tunnels beneath the Butte Hill is daunting to consider and little understood by many. Important details, such as the distinction between the “West Camp” and “East Camp”, can cause consternation for many a curious observer.

The Berkeley Pit and surrounding underground mine workings and bedrock wells are referred to as the “East Camp”, and are separate from the “West Camp”, which is located more to the south and west. The Camps essentially refer to two water systems. In the East Camp, surface and underground water flows to the lowest point in the system, namely, the Berkeley Pit. The West Camp, whose waters never reach the Berkeley, is another story.

The West Camp lies southwest of the Berkeley Pit/East Camp drainage and includes the Travona, Emma, and Ophir mine workings. Just as in the East Camp, the groundwater in this area has been closely monitored since the suspension of pumping in 1982 to ensure that water levels do not rise high enough to significantly impact surrounding aquifers—in this case, 5,435 feet is the magic number.

Since November 1989, pumping operations have kept West Camp water below this level. In the late 1950s, the West Camp mine workings were sealed off from the rest of the shafts and drifts on the Butte Hill by a series of barriers, or bulkheads—some made of wood, some cement.

Three main cement bulkheads block the connections between the Emma in the West Camp and the Original mine in the East Camp at the 1,600-foot level, and between the Emma and Colorado mines at the 1,400- and 1,000-foot levels.

Anaconda Company crews originally installed the bulkheads for two main reasons: 1) there were no plans to continue mining in the West Camp, and 2) they wanted to increase the efficiency of continuing mining operations in the other underground mines of the East Camp and the Berkeley Pit.

The bulkheads allowed the company to eventually reduce the volume of both groundwater pumped out from underground shafts and the area underground that required fresh air to be pumped in. However, even after the bulkheads were installed, water was pumped out of the West Camp Emma shaft until 1965.

Montana Resources copper precipitation plant adjacent to the Berkeley Pit. A 2013 slough of material from the Pit wall into the water knocked out the 'precip' pump, and precip operations have since ceased. In precipitation, the copper-rich water is pumped over scrap iron, and, in a replacement reaction, the copper solidifies as sludge, while iron takes its place in the water. The water was returned to the Pit by gravity flow, thus not increasing or decreasing the total volume of Pit water. Photo by Justin Ringsak.

Montana Resources mines the water

The Past

Butte’s Memory Book tells the story of Jim Ledford, a miner who lived in a log cabin below the famed Anaconda Mine. Alongside his cabin was an old dump containing scrap iron and tin cans. Mine water ran downhill through the dump, and Ledford noticed a heavy sludge formation. Out of curiosity, he had the sludge assayed and learned that it was 98-percent-pure copper.

Legend has it that Ledford told no one about his discovery. Instead, he quietly secured a one-year contract to handle the Anaconda mine water. He set up tanks, filled them with scrap metal, and ran the water through them. The undated account said his efforts earned him $90,000 that first year. His contract was not renewed.

A professional paper from a 1913 Butte mining conference tells a slightly different story. It states that in 1890 a William Ledford obtained a contract to handle water from the St. Lawrence Mine. The story ends the same, however, once the Anaconda Company realized the value of mine water, it built its own copper tanks, and copper precipitation using scrap iron became standard operating procedure. Thanks to Al Hooper for loaning his copy of the 1913 mining conference proceedings.

A third version of the story was relayed in the April 18, 1906 edition of The Montana Standard as part of a series of articles on “Queer Spots in Butte.” According to this version, in 1888 an old Welshman named Morgan who lived on the Butte Hill noticed copper dust left behind from tin cans thrown into a gully filled with runoff water from the mines. Morgan had the dust assayed and learned that it was almost pure copper. He experimented with the concept and developed a rudimentary precipitation plant, but died a few months after he had his plant operating successfully.

The story goes on to claim that a Butte Dutchman named Fred Miller dug holes in the side hill in the gulch below the St. Lawrence mine. He filled these holes with tin cans and scrap iron, allowing mine runoff water to flow over them.

For the next two or three years, he would collect the resulting copper dust every few weeks. Miller fraudulently claimed a monopoly on this system, and on several occasions tried to bluff out others on the hill who were experimenting with precipitation. The story notes that at this point William Ledford secured a lease to the St. Lawrence water, and Miller’s heyday came to an end.

The Present

Montana Resources copper precipitation plant adjacent to the Berkeley Pit. A 2013 slough of material from the Pit wall into the water knocked out the 'precip' pump, and precip operations have since ceased. In precipitation, the copper-rich water is pumped over scrap iron, and, in a replacement reaction, the copper solidifies as sludge, while iron takes its place in the water. The water was returned to the Pit by gravity flow, thus not increasing or decreasing the total volume of Pit water. Photo by Justin Ringsak.
Montana Resources copper precipitation plant adjacent to the Berkeley Pit. A 2013 slough of material from the Pit wall into the water knocked out the ‘precip’ pump, and precip operations have since ceased. In precipitation, the copper-rich water is pumped over scrap iron, and, in a replacement reaction, the copper solidifies as sludge, while iron takes its place in the water. The water was returned to the Pit by gravity flow, thus not increasing or decreasing the total volume of Pit water.

This method of copper recovery was not new: it dates back to medieval Europe. The Anaconda Company used it for years to recover copper from the water pumped from the underground mines, and the method is still used today. Montana Resources has mined copper from the rich mineral waters of the Berkeley Pit since 1998, pausing when mining operations were suspended from 2000 through 2003, then resuming in 2004 until a Pit slough in 2013 knocked out the necessary pump. The mine pumped out roughly 13 million gallons of Pit water per day, or about 10,000 gallons per minute.

In copper precipitation, the Pit water is piped to the company’s precipitation plant, built in the 1960’s next to a similar one from decades earlier. The water flows into concrete cells filled with scrap iron, and then chemistry takes over. Simply put, the iron in the cells and the copper in the water trade places. The water is returned to the Pit with a higher iron content, and the copper precipitates, or solidifies out of solution, clinging to the remaining iron.

The waterfall formerly visible on the southeast rim of the Pit, seen here in 2004, created by returning Pit water that has gone through Montana Resources copper precipitation plant. Photo by Josh Peck.
The waterfall formerly visible on the southeast rim of the Pit, seen here in 2004, created by returning Pit water that has gone through Montana Resources copper precipitation plant.

The chemical reaction does not take long. Water stays in contact with the iron for only about an hour, and then it flows back into the Pit through a separate ditch along the old Horseshoe Bend channel, which could be seen from the viewing stand as the waterfall on the northeast rim of the Pit. Mine officials say that this constant circulation process should not affect the water level of the Pit, nor should the change in water chemistry have an effect on eventual water treatment operations.

Once per week, crews drain each cell to recover the precipitated copper. A front-loader scoops up the copper and scrap iron mixture and transports it to a vibrating screen. Water sprayed from high-pressure hoses knocks the copper through the screen into a tank below. Remaining iron goes back to the cells for reuse. The cement copper concentrate is then shipped to the concentrator and processed through a filter press to reduce the water content for rail shipment. By pumping water from the Berkeley, the company recovered about 400,000 pounds of copper per month.

The company also routed copper-rich Horseshoe Bend water through the precipitation plant from 1998 until the mine shutdown of 2000. The sale of this precipitated copper helped to offset water treatment costs. Once through the precipitation plant, Horseshoe Bend water was mixed with lime (calcium hydroxide) and pumped north to the Yankee Doodle Tailings Pond.

Since the treatment plant went online in 2003, this Horseshoe Bend water has been kept out of the precip plant circuit.

The equation below shows the main chemical reaction that takes place during the copper precipitation process:

Fe + CuSO4 becomes FeSO4 + Cu

Who is responsible for treating the water?

The Atlantic Richfield Co., a subsidiary of British Petroleum (ARCO or BP-ARCO) which bought out the Anaconda Co. in 1977, and Montana Resources (MR), the company now mining in the Continental Pit adjacent to the east of the Berkeley, are responsible, along with four other entities affiliated with MR: Asarco, Inc.; AR Montana Corp.; MR Inc., and Dennis Washington. If they fail to pump and treat the water to keep levels below 5,410 feet, the U.S. government (EPA) can take over the project and charge these companies up to three times the project cost.