Home » Water Quality

Tag: Water Quality

A piece of gypsum ‘scale’ removed from the Horseshoe Bend Water Treatment Plant.

Following up on the EPA’s 2010 five-year review

In 2010 EPA interviewed local citizens and reviewed the status of Butte area Superfund sites as part of a required five-year review (the full review report is available here). Five-year reviews determine whether remedies or other response actions are protective of human health and the environment in compliance with a site’s decision documents. Methods, findings, and conclusions are documented in five-year review reports that identify issues found and make recommendations to address them.

The 2010 review identified six main issues related to the Butte Mine Flooding Operable Unit (BMFOU), which includes the Berkeley Pit. All involved the performance of the Horseshoe Bend Water Treatment Plant, which was completed in 2003.

The plant currently treats contaminated surface water flowing in from the north. This water is diverted away from the Pit, slowing the rate of rise of the water. Eventually, when the water level at any compliance point reaches the Critical Level of 5,410 feet, the plant will pump-and-treat Pit water to keep levels below that critical point. A performance test was conducted at the plant in 2007, and that data was considered in the 2010 review.

All treated water is currently recycled to Montana Resources active mining operations and is not discharged to Silver Bow Creek or any other surface outlet, Consequently, EPA identified all issues in the review as potential future issues that do not effect the current protectiveness of the remedy. Montana Resources does not allow any water to discharge from the Berkeley Pit and active mine area.

Issue 1: pH

Water treated at the plant did not meet the final pH standard. pH measures the acidity of a liquid. The pH is purposely raised to over 10 in order for it to be used as operating water in Montana Resource’s mill. Discharge standards only apply when water is discharged to Silver Bow Creek.

Issue 2: Gypsum scaling

Gypsum scale build up on the lip of the treatment plant clarifier overflow.
This photo from EPA’s 2010 five-year review report shows gypsum scale build up on the lip of the treatment plant clarifier overflow.

During the water treatment process, gypsum sometimes builds up, or ‘scales’, on the inside of tanks and pipes. This leads to a need for additional maintenance, as parts of the plant must be shut down for a short period each year so that crews can remove the build up. Measures to help manage and reduce scaling are being evaluated, and gypsum concentrations are monitored weekly.

Issue 3: Cadmium

Testing showed that treated water at times did not meet the standard for cadmium, a toxic metal. After adjustments were made to increase the pH, the standard for cadmium was met.

Issue 4: Test did not include treatment of Pit water

The 2007 performance test measured treated surface water from Horseshoe Bend. While this water is similarly contaminated, Pit water has higher concentrations of toxic metals and sulfate.

Issue 5: Scale Inhibitors used to control gypsum may effect metals removal

This issue is closely related to issue 2. To reduce gypsum scaling on critical pipelines and pumps, scale inhibitors are used. These chemical additions make it more difficult for gypsum to precipitate out of treated water and build up in the plant. Their effect on metals removal was a concern, but studies have shown no discernable effect of inhibitors on metals removal.

Issue 6: Whole Effluent Toxicity

Whole Effluent Toxicity (WET) is a measure of the total toxic effect from pollutants in treated wastewater on aquatic life. In 2010, WET testing had not yet been performed on treated water. Treated water is currently recycled in active mining operations, so it is no threat to aquatic life. Preliminary WET testing was completed during pilot testing using Horseshoe Bend water. Results showed the chronic exposure concentration with the lowest observable effect was 75% treated water mixed with 25% dilution water. More WET testing is planned.

Recommendations

EPA recommended that an additional performance test be completed prior to the 2015 five-year review to investigate all six of these issues and possible solutions.

EPA also noted that operations and maintenance at the plant are now more focused on preventative care, and operations in general have been optimized. After adjustments, treated water met all discharge standards with the exception of pH (issue 1).

In order to be protective in the long term, the various water quality issues in treated Pit water will have to be resolved before discharge to Silver Bow Creek becomes necessary. As long as Montana Resources continues active mining at the Continental Pit, no discharge is expected to occur.

Recommendations for additional performance testing will be addressed by treatability studies starting in 2016 and concluded by 2019, well before any discharge would potentially occur.

EPA determined that the ongoing remedy for the Pit is functioning as intended. When the water approaches the Critical Level, additional testing will help to further refine plant performance. The 2015 five-year review of Butte area Superfund sites will be published later in 2015, and will be available online here and on the EPA’s Butte Superfund website.

Interested citizens should contact EPA with any questions or comments regarding the 2010 or 2015 site reviews.

Water in the Berkeley Pit rising over time, 1979-2013. Photos from the Montana Bureau of Mines & Geology, Justin Ringsak, and Fritz Daily.

1982-2013: 31 years since pumps stopped

Over 31 years ago economic factors led the Atlantic-Richfield Corporation, or ARCO, now a subsidiary of British Petroleum, to cease mining operations at the Berkeley Pit in Butte, Montana. Underground mining had come to an end seven years earlier, but the underground pumps had continued to operate, pumping groundwater out from the mines and the Berkeley Pit.

The 1982 suspension of mining coincided with the stoppage of pumping, allowing groundwater to begin rising in the underground mines and eventually into the Berkeley Pit.

Water in the Berkeley Pit rising, 1979-2013. Photos from the Montana Bureau of Mines & Geology, Justin Ringsak, and Fritz Daily.
Water in the Berkeley Pit rising, 1979-2013.

With ARCO’s suspension of mining in the neighboring East Berkeley Pit (now known as the Continental Pit) on July 1, 1983, the future of mining on the Butte Hill was uncertain at best.

EPA LogoSoon after, the Berkeley Pit was classified as a federal Superfund site by the United States Environmental Protection Agency (EPA). According to the EPA, a Superfund site is an uncontrolled or abandoned place where hazardous waste is located, possibly affecting local ecosystems or people.

The end of mining at the Berkeley also marked the beginning of the Berkeley Pit lake we see today. 3,900 feet deep underground in the Kelley Mine , the pumps used to dewater the underground mines and the Berkeley Pit ran until April 23, 1982. Without pumping, the Berkeley Pit began to fill with water flowing in from both surface runoff and groundwater. Due to the natural geochemistry of the area and mining activities, the water is highly acidic and contains high concentrations of dissolved heavy metals.

This image from the Montana Bureau of Mines & Geology illustrates the connections between historic underground mining tunnels and the Berkeley Pit. After groundwater pumping ceased in 1982, the tunnels, and eventually the Pit, began to fill with water.
This image from the Montana Bureau of Mines & Geology illustrates the connections between historic underground mining tunnels and the Berkeley Pit. After groundwater pumping ceased in 1982, the tunnels, and eventually the Pit, began to fill with water.

By 1985, ARCO had sold a portion of its holdings to Montana businessman Dennis Washington. Mining operations in the Continental Pit, as well as heap leaching of old Berkeley Pit leach pads, were resumed by his new company, Montana Resources.

Berkeley Pit water quality has shown changes over time. It is regularly monitored by the Montana Bureau of Mines & Geology. The reddish color typically observed is due to high concentrations of iron solids. Photo by Justin Ringsak, 2009.

What’s in the Berkeley Pit water?

The water level at the Berkeley Pit has been recorded every month for more than 23 years. In addition to that monitoring, scientists at the Montana Bureau of Mines and Geology have been sampling and analyzing water from the Berkeley Pit twice a year for its chemical composition and physical properties.

Berkeley Pit Facts 2013. Graphic by Justin Ringsak.

In the Berkeley Pit, samples are taken from anywhere between three to nine different depths and analyzed for various dissolved chemicals.

Berkeley Pit water quality has shown changes over time. It is regularly monitored by the Montana Bureau of Mines & Geology. The reddish color typically observed is due to high concentrations of iron solids. Photo by Justin Ringsak, 2009.
Berkeley Pit water quality has shown changes over time. It is regularly monitored by the Montana Bureau of Mines & Geology. The reddish color typically observed is due to high concentrations of iron solids.

Water quality conditions, such as temperature, pH, specific conductance, and dissolved oxygen, are also measured at five- to ten-foot intervals from the surface to a depth of 600 feet. These same conditions are also measured at a depth near the Pit bottom.

In past years, the Berkeley Pit was a chemically layered system, which means that the chemistry of the water changed with depth. The brownish-red water at the surface was actually the least contaminated water in the pit, and the lower layer the worst water quality. The color changed as well, going from brownish-red on top to bluish-green at the bottom.

At a certain depth, the chemistry of the water changed so rapidly that it formed a chemical boundary scientists refer to as a chemocline. Water above the chemocline was chemically lighter, in other words, less dense, than the water below. The layering of the two waters is similar to oil floating on water. The water above the line was also less acidic (higher pH), with lower concentrations of metals.

A chemocline, or a difference in water chemistry depending on water depth, was seen in the Berkeley Pit prior to about 2011. Since that time, mixing of the water in the Pit lake has  caused the water chemistry to become more uniform. Graphic by Justin Ringsak.
A chemocline, or a difference in water chemistry depending on water depth, was seen in the Berkeley Pit prior to about 2012. Mixing of the water in the Pit lake over time has caused the water chemistry to become more uniform. Click on the image to view a larger version.

Due to mixing in the Berkeley Pit lake over time, this previously layered system disappeared around 2012, and the Pit water has since become more uniform.

Berkeley Pit Poster Series: Mining the Berkeley Pit. Click on the image to view a larger version, or use the links at the bottom of the page to download a high-resolution version.

2010 Berkeley Pit Posters

This educational poster series covers Berkeley Pit history and ongoing environmental management at the site. Hard copies of the posters can be requested by emailing info@pitwatch.org. Posters are available free-of-charge for Clark Fork Basin educators and public organizations.

The poster set includes:

Berkeley Pit Poster Series: Butte Mining Through the Years
Berkeley Pit Poster Series: Butte Mining Through the Years. Click on the image to view a larger version, or use the links at the bottom of the page to download a high-resolution version.
Berkeley Pit Poster Series: Mining the Berkeley Pit. Click on the image to view a larger version, or use the links at the bottom of the page to download a high-resolution version.
Berkeley Pit Poster Series: Mining the Berkeley Pit. Click on the image to view a larger version, or use the links at the bottom of the page to download a high-resolution version.
Berkeley Pit Poster Series: The Water Returns. Click on the image to view a larger version, or use the links at the bottom of the page to download a high-resolution version.
Berkeley Pit Poster Series: The Water Returns. Click on the image to view a larger version, or use the links at the bottom of the page to download a high-resolution version.
Berkeley Pit Poster Series: Treating the Water. Click on the image to view a larger version, or use the links at the bottom of the page to download a high-resolution version.
Berkeley Pit Poster Series: Treating the Water. Click on the image to view a larger version, or use the links at the bottom of the page to download a high-resolution version.

Download high-resolution versions of the posters using the links below.

[wpfilebase tag=file id=10 /]

[wpfilebase tag=file id=11 /]

[wpfilebase tag=file id=12 /]

[wpfilebase tag=file id=13 /]

Irrigating with mine water

Post-mining redevelopment efforts in Butte rely on the availability of water to irrigate vegetation on reclaimed and capped areas. Water recovered from the Belmont mine and other parts of the flooded underground mine workings is a possible source of irrigation water that would reduce the stress on the city water supply, leaving more water in the Big Hole River.

Butte-Silver Bow recently received a grant from the Montana Department of Natural Resources and Conservation to demonstrate a treatment system at the Belmont Mine on East Mercury Street to determine if it is cost-effective to treat mine water to meet irrigation standards. Following a trial irrigation conducted by MERDI in 2004, a pumping test and treatability study were performed by MSE under the federal Mine Waste Technology Program in 2007 to characterize the water at the Belmont. Results indicated that this water could meet irrigation standards with three unit operations: oxidation, pH adjustment, and solid/liquid separation.

The results of optimized treatment from the treatability tests met target irrigation levels. If the demonstration of the water treatment system and trial irrigation are successful this summer, beneficial reuse of water in the underground mine workings could become a reality and lead to a greener Butte.

The Yankee Doodle Tailings Pond, part of the active Montana Resources mine that borders the Berkeley Pit, in 2008. Photo by Justin Ringsak.

Above the Pit: The Yankee Doodle Tailings Pond

Looking west from Rampart Mountain over the Yankee Doodle Tailings Pond, located north of the Berkeley Pit, in 2007.

Looking west from Rampart Mountain over the Yankee Doodle Tailings Pond, located north of the Berkeley Pit, in 2007.

North of the Berkeley Pit stands one of the largest earthen dams in the United States. The dam, constructed from waste rock mined out of the Berkeley Pit and, in more recent years, the Continental Pit, stands over 650 feet (200 meters) tall. It holds back the Yankee Doodle tailings impoundment, also known as the Yankee Doodle Tailings Pond. As part of active mining operations, Montana Resources pumps tailings and water to the Yankee Doodle Pond. Lime rock is also added, resulting in a non-acidic pH (above 7.0) tailings slurry, thus mitigating or avoiding the phenomenon of acid mine drainage.watch T2 Trainspotting 2017 film now

The Yankee Doodle Tailings Pond, part of the active Montana Resources mine that borders the Berkeley Pit, in 2008. Photo by Justin Ringsak.

The Yankee Doodle Tailings Pond, part of the active Montana Resources mine that borders the Berkeley Pit, in 2008.

Tailings particles settle out on the south portion of the ponds. Snowmelt runoff from upper drainages also mixes with the water at the north end of the pond. These factors result in clear water with an alkaline (or non-acidic) pH and very low concentrations of dissolved metals at the north end of the pond.

When mining operations were suspended from 2000 through 2003, water was no longer pumped to the Yankee Doodle site, and the tailings deposited there began to dry out. In response to concerns from the community over dust clouds blowing in the vicinity of the tailings pond, Montana Resources spread about 1.5 million tons of rock, approximately 18 inches deep, over about 506 aces at the tailings impoundment site to keep the dust down. Since the mine reopened, the tailings deposit has remained wet, resulting in no further instances of tailings-dust clouds on Butte’s northern horizon.

Butte, Montana, mine flooding west camp wells, shafts and area of 1960s flooding. The west camp groundwater system is monitored and maintained separately from the Berkeley Pit and connected east camp mines.

West Camp also part of mine flooding site

A timeline of the history of the West Camp portion of the greater Butte, Montana Superfund site, which is monitored and managed separately from the Berkeley Pit and connected East Camp mines.
A timeline of the history of the West Camp portion of the greater Butte, Montana Superfund site, which is monitored and managed separately from the Berkeley Pit and connected East Camp mines. Click on the image to view a larger version.

The anatomy of the thousands of miles of tunnels beneath the Butte Hill is daunting to consider and little understood by many. Important details, such as the distinction between the “West Camp” and “East Camp”, can cause consternation for many a curious observer.

The Berkeley Pit and surrounding underground mine workings and bedrock wells are referred to as the “East Camp”, and are separate from the “West Camp”, which is located more to the south and west. The Camps essentially refer to two water systems. In the East Camp, surface and underground water flows to the lowest point in the system, namely, the Berkeley Pit. The West Camp, whose waters never reach the Berkeley, is another story.

The West Camp lies southwest of the Berkeley Pit/East Camp drainage and includes the Travona, Emma, and Ophir mine workings. Just as in the East Camp, the groundwater in this area has been closely monitored since the suspension of pumping in 1982 to ensure that water levels do not rise high enough to significantly impact surrounding aquifers—in this case, 5,435 feet is the magic number.

Since November 1989, pumping operations have kept West Camp water below this level. In the late 1950s, the West Camp mine workings were sealed off from the rest of the shafts and drifts on the Butte Hill by a series of barriers, or bulkheads—some made of wood, some cement.

Three main cement bulkheads block the connections between the Emma in the West Camp and the Original mine in the East Camp at the 1,600-foot level, and between the Emma and Colorado mines at the 1,400- and 1,000-foot levels.

Anaconda Company crews originally installed the bulkheads for two main reasons: 1) there were no plans to continue mining in the West Camp, and 2) they wanted to increase the efficiency of continuing mining operations in the other underground mines of the East Camp and the Berkeley Pit.

The bulkheads allowed the company to eventually reduce the volume of both groundwater pumped out from underground shafts and the area underground that required fresh air to be pumped in. However, even after the bulkheads were installed, water was pumped out of the West Camp Emma shaft until 1965.

The Horseshoe Bend Water Treatment Plant, completed in 2003, captures surface water to slow the rate of fill of the Berkeley Pit lake. In the future, the plant will capture and treat water to prevent Pit water from rising further. Photo by Justin Ringsak.

Water treatment plant working as expected

The Horseshoe Bend Water Treatment Plant, completed in 2003, captures surface water to slow the rate of fill of the Berkeley Pit lake. In the future, the plant will capture and treat water to prevent Pit water from rising further. Photo by Justin Ringsak.
The Horseshoe Bend Water Treatment Plant, completed in 2003, captures surface water to slow the rate of fill of the Berkeley Pit lake. In the future, the plant will capture and treat water to prevent Pit water from rising further.

Looking northeast from the Berkeley Pit viewing stand, visitors can see one of the most important components in the future management of the Pit: the Horseshoe Bend Water Treatment Plant. Sitting on four acres near the former McQueen neighborhood, about 600 feet east of the Berkeley Pit, the treatment plant was constructed in 2002-2003. It sits on native land that is very stable, and the plant was built to withstand the maximum probable earthquake.

The facility was designed to treat up to seven million gallons per day, or about 5,000 gallons of water per minute. The facility cost approximately $18 million to build, and, depending on how much water is treated, operating expenses run about $2 million per year.

Once the Berkeley Pit water comes online, which is projected to happen in 2023, annual operation and maintenance costs could be as high as $4.5 million. Under the terms of the 2002 Consent Decree negotiated with the government, BP-ARCO and Montana Resources have agreed to provide financial assurances to pay operation and maintenance expenses in perpetuity. The two companies also paid all construction costs for the facility.

The actual construction of the treatment plant was a massive undertaking. It is estimated that workers put in 125,000 hours of total labor, and the facility also required more than 4,500 cubic yards of concrete.

The general construction contractor and subcontractors were all from Montana, with several from Butte, and, during the course of construction, they reported no safety incidents of any kind.

As per the schedule listed in the 1994 EPA Record of Decision and included in the 2002 Consent Decree, based upon current water level projections, a review of the Horseshoe Bend Water Treatment Plant design and operation would begin in 2019. Any necessary upgrades would have to be completed by 2021, two years before Pit water itself is currently projected to be pumped and treated in 2023.

In November, 2007, a performance review of the Horseshoe Bend plant was completed by Montana Resources, ARCO, and North American Water Systems, with cooperation from the Montana Bureau of Mines & Geology, the Department of Environmental Quality, and the EPA.

The performance test was undertaken to ensure that the treatment system is capable of meeting the water quality standards set in the Consent Decree for the site. For this test, only water from the Horseshoe Bend drainage was treated, as water from the Pit is not yet required to be pumped and treated at the plant.

The test began on November 18, 2007, and continued for 72 hours. All of the water quality standards for contaminants of concern were met. Additional adjustments still need to be made to address pH. For this test, the pH was kept at a high (basic or alkaline) level in order to effectively remove contaminants of concern and meet water quality standards.

The optimization of the plant in the future may result in a lower pH. Additionally, methods of adjusting the pH prior to discharge to Silver Bow Creek have been evaluated conceptually. Any method of adjusting the pH will be formally evaluated, if necessary, before any water from the plant is discharged to Silver Bow Creek.

A clarifier, drained for maintenance, at the Horseshoe Bend Water Treatment Plant. The plant will eventually be required to treat water from the Berkeley Pit. Photo from the EPA Five Year Review Report (2011) for the site.

Treatment technology thoroughly studied

The Berkeley Pit is literally world famous in the mine waste cleanup industry, and the final technology used in the Horseshoe Bend Water Treatment Plant, a High Density Solids (HDS) process, was selected after an assessment of tests and the demonstrated effectiveness of cleanup technologies from research groups around the world.

A clarifier, drained for maintenance, at the Horseshoe Bend Water Treatment Plant. The plant will eventually be required to treat water from the Berkeley Pit. Photo from the EPA Five Year Review Report (2011) for the site.
A clarifier, drained for maintenance, at the Horseshoe Bend Water Treatment Plant. The plant will eventually be required to treat water from the Berkeley Pit.

The Horseshoe Bend facility currently treats water from Horseshoe Bend, and will eventually be used to treat water from the Berkeley. The treatment plant utilizes a two-stage lime (calcium hydroxide) precipitation process in combination with HDS technology. Lime, aeration and polymer addition remove metals from the water. The fully automated facility generates about 10 times less sludge than a conventional lime treatment plant. HDS technology produces denser sludge through a recycling process in which the sludge generated in the water treatment process is sent through the system many times.

The process resembles a snowball effect. Each time sludge particles are sent through, they grow in size as new particles attach to the old ones. At the end, the final sludge product – like a watery mud – is much denser.

Horseshoe Bend Treatment Plant Sludge Reduction. Graphic by Justin Ringsak.
Horseshoe Bend Treatment Plant Sludge Reduction

The relatively low final volume of sludge – currently about 40,000 gallons per day in a 220,000-gallon slurry – is deposited in the Berkeley Pit, eliminating the need for a land-based sludge repository. Test results indicate that sludge disposal in the Pit may raise the pH of the water over a 10- to 20-year period, which could potentially decrease treatment costs for Pit water.

Due to the design of the system, treated water can easily be used in the concentration process at the adjacent Montana Resources mine, or, in the event that the mine ceases operations, discharged to Silver Bow Creek upstream from the confluence with Blacktail Creek near Montana Street. The volume of treated water should add about 4.5 cubic feet per second (cfs) of flow to the creek, which represents about a 50 percent increase to the base flow of 10 cfs.

A performance test of the Horseshoe Bend plant was completed in November 2007, as mandated by the Record of Decision. Based on the performance review, water discharged from the plant meets all discharge standards for contaminants of concern set by the EPA. Additional adjustments still need to be made to address pH. In general, plant operations are going as expected.

Montana Resources copper precipitation plant adjacent to the Berkeley Pit. A 2013 slough of material from the Pit wall into the water knocked out the 'precip' pump, and precip operations have since ceased. In precipitation, the copper-rich water is pumped over scrap iron, and, in a replacement reaction, the copper solidifies as sludge, while iron takes its place in the water. The water was returned to the Pit by gravity flow, thus not increasing or decreasing the total volume of Pit water. Photo by Justin Ringsak.

Montana Resources mines the water

The Past

Butte’s Memory Book tells the story of Jim Ledford, a miner who lived in a log cabin below the famed Anaconda Mine. Alongside his cabin was an old dump containing scrap iron and tin cans. Mine water ran downhill through the dump, and Ledford noticed a heavy sludge formation. Out of curiosity, he had the sludge assayed and learned that it was 98-percent-pure copper.

Legend has it that Ledford told no one about his discovery. Instead, he quietly secured a one-year contract to handle the Anaconda mine water. He set up tanks, filled them with scrap metal, and ran the water through them. The undated account said his efforts earned him $90,000 that first year. His contract was not renewed.

A professional paper from a 1913 Butte mining conference tells a slightly different story. It states that in 1890 a William Ledford obtained a contract to handle water from the St. Lawrence Mine. The story ends the same, however, once the Anaconda Company realized the value of mine water, it built its own copper tanks, and copper precipitation using scrap iron became standard operating procedure. Thanks to Al Hooper for loaning his copy of the 1913 mining conference proceedings.

A third version of the story was relayed in the April 18, 1906 edition of The Montana Standard as part of a series of articles on “Queer Spots in Butte.” According to this version, in 1888 an old Welshman named Morgan who lived on the Butte Hill noticed copper dust left behind from tin cans thrown into a gully filled with runoff water from the mines. Morgan had the dust assayed and learned that it was almost pure copper. He experimented with the concept and developed a rudimentary precipitation plant, but died a few months after he had his plant operating successfully.

The story goes on to claim that a Butte Dutchman named Fred Miller dug holes in the side hill in the gulch below the St. Lawrence mine. He filled these holes with tin cans and scrap iron, allowing mine runoff water to flow over them.

For the next two or three years, he would collect the resulting copper dust every few weeks. Miller fraudulently claimed a monopoly on this system, and on several occasions tried to bluff out others on the hill who were experimenting with precipitation. The story notes that at this point William Ledford secured a lease to the St. Lawrence water, and Miller’s heyday came to an end.

The Present

Montana Resources copper precipitation plant adjacent to the Berkeley Pit. A 2013 slough of material from the Pit wall into the water knocked out the 'precip' pump, and precip operations have since ceased. In precipitation, the copper-rich water is pumped over scrap iron, and, in a replacement reaction, the copper solidifies as sludge, while iron takes its place in the water. The water was returned to the Pit by gravity flow, thus not increasing or decreasing the total volume of Pit water. Photo by Justin Ringsak.
Montana Resources copper precipitation plant adjacent to the Berkeley Pit. A 2013 slough of material from the Pit wall into the water knocked out the ‘precip’ pump, and precip operations have since ceased. In precipitation, the copper-rich water is pumped over scrap iron, and, in a replacement reaction, the copper solidifies as sludge, while iron takes its place in the water. The water was returned to the Pit by gravity flow, thus not increasing or decreasing the total volume of Pit water.

This method of copper recovery was not new: it dates back to medieval Europe. The Anaconda Company used it for years to recover copper from the water pumped from the underground mines, and the method is still used today. Montana Resources has mined copper from the rich mineral waters of the Berkeley Pit since 1998, pausing when mining operations were suspended from 2000 through 2003, then resuming in 2004 until a Pit slough in 2013 knocked out the necessary pump. The mine pumped out roughly 13 million gallons of Pit water per day, or about 10,000 gallons per minute.

In copper precipitation, the Pit water is piped to the company’s precipitation plant, built in the 1960’s next to a similar one from decades earlier. The water flows into concrete cells filled with scrap iron, and then chemistry takes over. Simply put, the iron in the cells and the copper in the water trade places. The water is returned to the Pit with a higher iron content, and the copper precipitates, or solidifies out of solution, clinging to the remaining iron.

The waterfall formerly visible on the southeast rim of the Pit, seen here in 2004, created by returning Pit water that has gone through Montana Resources copper precipitation plant. Photo by Josh Peck.
The waterfall formerly visible on the southeast rim of the Pit, seen here in 2004, created by returning Pit water that has gone through Montana Resources copper precipitation plant.

The chemical reaction does not take long. Water stays in contact with the iron for only about an hour, and then it flows back into the Pit through a separate ditch along the old Horseshoe Bend channel, which could be seen from the viewing stand as the waterfall on the northeast rim of the Pit. Mine officials say that this constant circulation process should not affect the water level of the Pit, nor should the change in water chemistry have an effect on eventual water treatment operations.

Once per week, crews drain each cell to recover the precipitated copper. A front-loader scoops up the copper and scrap iron mixture and transports it to a vibrating screen. Water sprayed from high-pressure hoses knocks the copper through the screen into a tank below. Remaining iron goes back to the cells for reuse. The cement copper concentrate is then shipped to the concentrator and processed through a filter press to reduce the water content for rail shipment. By pumping water from the Berkeley, the company recovered about 400,000 pounds of copper per month.

The company also routed copper-rich Horseshoe Bend water through the precipitation plant from 1998 until the mine shutdown of 2000. The sale of this precipitated copper helped to offset water treatment costs. Once through the precipitation plant, Horseshoe Bend water was mixed with lime (calcium hydroxide) and pumped north to the Yankee Doodle Tailings Pond.

Since the treatment plant went online in 2003, this Horseshoe Bend water has been kept out of the precip plant circuit.

The equation below shows the main chemical reaction that takes place during the copper precipitation process:

Fe + CuSO4 becomes FeSO4 + Cu