Home » Water Treatment

Tag: Water Treatment

Projected Berkeley Pit management timeline (2015-2023).

Plan for treatment technology assessment

The guiding documents for Pit management require ongoing assessment and evaluation of the Horseshoe Bend Water Treatment Plant and the technology used to treat contaminated Pit water until several years prior to full-scale implementation. That implementation is required when water levels at any monitoring compliance point reach the Critical Level of 5,410 feet above sea level.

A review of treatment technologies is required 4 years before any compliance point is projected to reach the Critical Level. Current projections show that the Critical Level will be reached in 2023; therefore the technology review will start in 2017 and must be completed by 2019. AR and Montana Resources are already evaluating treatment alternatives, and this work will continue through 2017. This includes treatability studies and testing on the expected quantity and quality of contaminated water. Construction upgrades are scheduled for 2019 through 2021, with upgrades completed at least 2 years before the Critical Level is reached.

Projected Berkeley Pit management timeline (2015-2023) and significant past events.
Projected Berkeley Pit management timeline (2015-2023) and significant past events. Click on the image to view a larger version.
A piece of gypsum ‘scale’ removed from the Horseshoe Bend Water Treatment Plant.

Following up on the EPA’s 2010 five-year review

In 2010 EPA interviewed local citizens and reviewed the status of Butte area Superfund sites as part of a required five-year review (the full review report is available here). Five-year reviews determine whether remedies or other response actions are protective of human health and the environment in compliance with a site’s decision documents. Methods, findings, and conclusions are documented in five-year review reports that identify issues found and make recommendations to address them.

The 2010 review identified six main issues related to the Butte Mine Flooding Operable Unit (BMFOU), which includes the Berkeley Pit. All involved the performance of the Horseshoe Bend Water Treatment Plant, which was completed in 2003.

The plant currently treats contaminated surface water flowing in from the north. This water is diverted away from the Pit, slowing the rate of rise of the water. Eventually, when the water level at any compliance point reaches the Critical Level of 5,410 feet, the plant will pump-and-treat Pit water to keep levels below that critical point. A performance test was conducted at the plant in 2007, and that data was considered in the 2010 review.

All treated water is currently recycled to Montana Resources active mining operations and is not discharged to Silver Bow Creek or any other surface outlet, Consequently, EPA identified all issues in the review as potential future issues that do not effect the current protectiveness of the remedy. Montana Resources does not allow any water to discharge from the Berkeley Pit and active mine area.

Issue 1: pH

Water treated at the plant did not meet the final pH standard. pH measures the acidity of a liquid. The pH is purposely raised to over 10 in order for it to be used as operating water in Montana Resource’s mill. Discharge standards only apply when water is discharged to Silver Bow Creek.

Issue 2: Gypsum scaling

Gypsum scale build up on the lip of the treatment plant clarifier overflow.
This photo from EPA’s 2010 five-year review report shows gypsum scale build up on the lip of the treatment plant clarifier overflow.

During the water treatment process, gypsum sometimes builds up, or ‘scales’, on the inside of tanks and pipes. This leads to a need for additional maintenance, as parts of the plant must be shut down for a short period each year so that crews can remove the build up. Measures to help manage and reduce scaling are being evaluated, and gypsum concentrations are monitored weekly.

Issue 3: Cadmium

Testing showed that treated water at times did not meet the standard for cadmium, a toxic metal. After adjustments were made to increase the pH, the standard for cadmium was met.

Issue 4: Test did not include treatment of Pit water

The 2007 performance test measured treated surface water from Horseshoe Bend. While this water is similarly contaminated, Pit water has higher concentrations of toxic metals and sulfate.

Issue 5: Scale Inhibitors used to control gypsum may effect metals removal

This issue is closely related to issue 2. To reduce gypsum scaling on critical pipelines and pumps, scale inhibitors are used. These chemical additions make it more difficult for gypsum to precipitate out of treated water and build up in the plant. Their effect on metals removal was a concern, but studies have shown no discernable effect of inhibitors on metals removal.

Issue 6: Whole Effluent Toxicity

Whole Effluent Toxicity (WET) is a measure of the total toxic effect from pollutants in treated wastewater on aquatic life. In 2010, WET testing had not yet been performed on treated water. Treated water is currently recycled in active mining operations, so it is no threat to aquatic life. Preliminary WET testing was completed during pilot testing using Horseshoe Bend water. Results showed the chronic exposure concentration with the lowest observable effect was 75% treated water mixed with 25% dilution water. More WET testing is planned.

Recommendations

EPA recommended that an additional performance test be completed prior to the 2015 five-year review to investigate all six of these issues and possible solutions.

EPA also noted that operations and maintenance at the plant are now more focused on preventative care, and operations in general have been optimized. After adjustments, treated water met all discharge standards with the exception of pH (issue 1).

In order to be protective in the long term, the various water quality issues in treated Pit water will have to be resolved before discharge to Silver Bow Creek becomes necessary. As long as Montana Resources continues active mining at the Continental Pit, no discharge is expected to occur.

Recommendations for additional performance testing will be addressed by treatability studies starting in 2016 and concluded by 2019, well before any discharge would potentially occur.

EPA determined that the ongoing remedy for the Pit is functioning as intended. When the water approaches the Critical Level, additional testing will help to further refine plant performance. The 2015 five-year review of Butte area Superfund sites will be published later in 2015, and will be available online here and on the EPA’s Butte Superfund website.

Interested citizens should contact EPA with any questions or comments regarding the 2010 or 2015 site reviews.

The Berkeley Pit and connected tunnels act as a sink that collects groundwater in the area due to the fact that the basin of the Berkeley Pit lake is the lowest point in the groundwater system. Image from Google Earth.

Do Butte residents need flood insurance?

No. Butte residents don’t need to worry about flood insurance in regard to the Berkeley Pit and connected underground mine workings. The Berkeley Pit and connected tunnels act as a sink that collects groundwater in the area. Water levels in the Berkeley Pit and associated mine shafts are currently 175 to 200 feet below the rim of the Pit.

Elevations above sea level for Berkeley Pit water and surrouding Butte, Montana landmarks. Map image from Google Earth, graphic by Justin Ringsak.
Elevations above sea level for Berkeley Pit water and surrounding Butte, Montana landmarks. Image from Google Earth. Click on the image to view a larger version.

The lowest point on the Pit rim, on the east side near the Montana Resources concentrator, is 5,509 feet above sea level. As of June 2013, the Berkeley Pit water level was 5,310 feet, and the highest water level in the system, in the Pilot Butte shaft, was 5,335 feet.

Under the management plan for the Berkeley Pit, these water elevations will always be maintained at levels 100 feet or more below the rim. This will be accomplished by pumping and treating Berkeley Pit water. Pumping and treating will start when the water level at any one of the monitoring compliance points reaches the critical level of 5,410 feet. The Montana Bureau of Mines & Geology (MBMG) monitors water levels at all compliance points, as well as at several other monitoring sites, on a monthly basis. Based on the rate the Pit is filling now, that should happen around 2023.

Berkeley Pit groundwater monitoring locations and water levels, including wells and abandoned mine shafts, June 2013. Graphic by Justin Ringsak.
Berkeley Pit groundwater monitoring locations and water levels, including wells and abandoned mine shafts, June 2013.

The elevation of the Metro Storm Drain near the Pit at Texas Avenue and Continental Drive is 5,470 feet, about 60 feet above the highest water level allowed for the Berkeley Pit system.

For further comparison, a monitoring well at Greeley School has an elevation of 5,503 feet, about 93 feet higher than the critical level. The current water level in this well is 5,462 feet, about 52 feet higher than the critical level. This difference in water levels tells us that groundwater is flowing toward the Pit, and will continue to do so after the waters in the Berkeley Pit and connected mines reach their highest allowed levels.

In other words, water is flowing into the Berkeley Pit, and the Pit will be managed so that water is always flowing into it. Butte residents can rest easy knowing that the Berkeley Pit is not going to overflow, and that there is no need for flood insurance due to the Pit or underground mines.

This image illustrates how the Berkeley Pit, with the lowest water levels in the area, acts as a sink that collects groundwater. Water levels indicated for each monitoring point are from June 2013.
This image illustrates how the Berkeley Pit, with the lowest water levels in the area, acts as a sink that collects groundwater. Water levels indicated for each monitoring point are from June 2013. Click on the image to view a larger version.
Monitoring compliance points in the Berkeley Pit groundwater system

What is being done to manage the Berkeley Pit now?

The Horseshoe Bend Water Treatment Plant, completed in 2003, captures surface water to slow the rate of fill of the Berkeley Pit lake. In the future, the plant will capture and treat water to prevent Pit water from rising further. Photo by Justin Ringsak.
The Horseshoe Bend Water Treatment Plant, completed in 2003, captures surface water to slow the rate of fill of the Berkeley Pit lake. In the future, the plant will capture and treat water to prevent Pit water from rising further.

Water from the Horseshoe Bend drainage is diverted before reaching the Pit and treated in the Horseshoe Bend Water Treatment Plant for use in mining operations. In 2012, the plant treated about 5 million gallons of water per day. Sludge from the treatment process was returned to the Pit at a rate of 491,000 gallons per day. No water or waste leaves the Pit or mine site.

Water levels in the Pit, wells and mine shafts are monitored monthly. An evaluation of the rate of fill is performed each year to determine dates for future reviews and plant upgrades.

Berkeley Pit groundwater monitoring locations and water levels, including wells and abandoned mine shafts, June 2013. Graphic by Justin Ringsak.
Berkeley Pit groundwater monitoring locations and water levels, including wells and abandoned mine shafts, June 2013. Click on the image to view a larger version.
Monitoring compliance points in the Berkeley Pit groundwater system
Monitoring compliance points in the Berkeley Pit groundwater system. The water level a each point is monitored monthly by the Montana Bureau of Mines & Geology. When the water at any compliance point reaches the Critical Level (5,410 feet above sea level), pumping and treating of Berkeley Pit water will begin to prevent contaminated water in the Pit and groundwater system from spreading outward. Click on the image to view a larger version.

 

A timeline projecting future Berkeley Pit management.

Will the Treatment Plant be able to meet the demand to pump-and-treat Pit water in the future?

A treatment pond at the Horseshoe Bend Water Treatment Plant (2009). Photo by Justin Ringsak.
A treatment pond at the Horseshoe Bend Water Treatment Plant (2009).

Yes, after a treatment technology review and upgrades to the plant are completed.

The 1994 EPA Record of Decision and 2002 Consent Decree require a review of treatment technologies when the Critical Water Level (5,410 feet) is about four years away. The review will consider the plant’s ability to treat both Pit water and water coming from the Horseshoe Bend drainage to the north. Based on the review, the Treatment Plant will then be upgraded to best treat the water.

Upgrades must be completed two years before the critical level is reached. Projections show water levels at one of the compliance points connected to the Pit will near the critical level around 2023, so a treatment review would take place in 2019, with any needed upgrades completed by 2021, as indicated by the timeline below.

This timeline reflects project changes agreed to in the Consent Decree that governs Berkeley Pit management. The timeline is reviewed and adjusted by the Montana Bureau of Mines & Geology each year. Any future timeline changes will be reported in PitWatch and on the PitWatch website at www.pitwatch.org. Graphic by Justin Ringsak.
This timeline reflects project changes agreed to in the Consent Decree that governs Berkeley Pit management. The timeline is reviewed and adjusted by the Montana Bureau of Mines & Geology each year. Any future timeline changes will be reported in PitWatch and on the PitWatch website at www.pitwatch.org. Click on the image to view a larger version.

 

Water in the Berkeley Pit rising over time, 1979-2013. Photos from the Montana Bureau of Mines & Geology, Justin Ringsak, and Fritz Daily.

1982-2013: 31 years since pumps stopped

Over 31 years ago economic factors led the Atlantic-Richfield Corporation, or ARCO, now a subsidiary of British Petroleum, to cease mining operations at the Berkeley Pit in Butte, Montana. Underground mining had come to an end seven years earlier, but the underground pumps had continued to operate, pumping groundwater out from the mines and the Berkeley Pit.

The 1982 suspension of mining coincided with the stoppage of pumping, allowing groundwater to begin rising in the underground mines and eventually into the Berkeley Pit.

Water in the Berkeley Pit rising, 1979-2013. Photos from the Montana Bureau of Mines & Geology, Justin Ringsak, and Fritz Daily.
Water in the Berkeley Pit rising, 1979-2013.

With ARCO’s suspension of mining in the neighboring East Berkeley Pit (now known as the Continental Pit) on July 1, 1983, the future of mining on the Butte Hill was uncertain at best.

EPA LogoSoon after, the Berkeley Pit was classified as a federal Superfund site by the United States Environmental Protection Agency (EPA). According to the EPA, a Superfund site is an uncontrolled or abandoned place where hazardous waste is located, possibly affecting local ecosystems or people.

The end of mining at the Berkeley also marked the beginning of the Berkeley Pit lake we see today. 3,900 feet deep underground in the Kelley Mine , the pumps used to dewater the underground mines and the Berkeley Pit ran until April 23, 1982. Without pumping, the Berkeley Pit began to fill with water flowing in from both surface runoff and groundwater. Due to the natural geochemistry of the area and mining activities, the water is highly acidic and contains high concentrations of dissolved heavy metals.

This image from the Montana Bureau of Mines & Geology illustrates the connections between historic underground mining tunnels and the Berkeley Pit. After groundwater pumping ceased in 1982, the tunnels, and eventually the Pit, began to fill with water.
This image from the Montana Bureau of Mines & Geology illustrates the connections between historic underground mining tunnels and the Berkeley Pit. After groundwater pumping ceased in 1982, the tunnels, and eventually the Pit, began to fill with water.

By 1985, ARCO had sold a portion of its holdings to Montana businessman Dennis Washington. Mining operations in the Continental Pit, as well as heap leaching of old Berkeley Pit leach pads, were resumed by his new company, Montana Resources.

Elevations above sea level for Berkeley Pit water and surrouding Butte, Montana landmarks. Map image from Google Earth, graphic by Justin Ringsak.

Could the Berkeley Pit ever overflow?

The Berkeley Pit will never overflow. In 1994 the EPA established the Critical Water Level (the maximum level the water will be allowed to reach) at 5,410 feet above sea level, which is one hundred feet below the rim.

Elevations above sea level for Berkeley Pit water and surrouding Butte, Montana landmarks. Map image from Google Earth, graphic by Justin Ringsak.
Elevations above sea level for Berkeley Pit water and surrounding Butte, Montana landmarks. Image from Google Earth. Click on the image to view a larger version.

Water levels are regularly monitored at the Pit, in historic underground mines, and in wells surrounding the Pit. Failure to keep the water below 5,410 feet would result in steep fines for the companies responsible for the site, BP-ARCO and Montana Resources.

In addition to careful monitoring, the Horseshoe Bend Water Treatment Plant was constructed to make sure water in the Pit remains below 5,410 feet. Pit water will be pumped, treated, and discharged when the level nears the critical point.

Even if the water was allowed to rise unchecked, it would still never reach the rim. The groundwater flow would reverse direction and, instead of flowing toward the Pit, as it does now, the water would flow away from the Pit, underground into the sandy aquifer beneath Butte’s valley.

Due to the underground flow, Pit surface water would never reach the rim. Considering the federal orders, potential fines, and frequent monitoring, Pit water will not rise unchecked.

How is the Horseshoe Bend Water Treatment Plant operating?

The plant treats about 3.4 million gallons of water per day. This water currently comes from the Horseshoe Bend drainage. Treated water is used in Montana Resources mining operations.

Sludge from the treatment process is returned to the Pit at a rate of 250,000 gallons per day. No water or waste leaves the Berkeley Pit or mine site.

Berkeley Pit Poster Series: Mining the Berkeley Pit. Click on the image to view a larger version, or use the links at the bottom of the page to download a high-resolution version.

2010 Berkeley Pit Posters

This educational poster series covers Berkeley Pit history and ongoing environmental management at the site. Hard copies of the posters can be requested by emailing info@pitwatch.org. Posters are available free-of-charge for Clark Fork Basin educators and public organizations.

The poster set includes:

Berkeley Pit Poster Series: Butte Mining Through the Years
Berkeley Pit Poster Series: Butte Mining Through the Years. Click on the image to view a larger version, or use the links at the bottom of the page to download a high-resolution version.
Berkeley Pit Poster Series: Mining the Berkeley Pit. Click on the image to view a larger version, or use the links at the bottom of the page to download a high-resolution version.
Berkeley Pit Poster Series: Mining the Berkeley Pit. Click on the image to view a larger version, or use the links at the bottom of the page to download a high-resolution version.
Berkeley Pit Poster Series: The Water Returns. Click on the image to view a larger version, or use the links at the bottom of the page to download a high-resolution version.
Berkeley Pit Poster Series: The Water Returns. Click on the image to view a larger version, or use the links at the bottom of the page to download a high-resolution version.
Berkeley Pit Poster Series: Treating the Water. Click on the image to view a larger version, or use the links at the bottom of the page to download a high-resolution version.
Berkeley Pit Poster Series: Treating the Water. Click on the image to view a larger version, or use the links at the bottom of the page to download a high-resolution version.

Download high-resolution versions of the posters using the links below.

[wpfilebase tag=file id=10 /]

[wpfilebase tag=file id=11 /]

[wpfilebase tag=file id=12 /]

[wpfilebase tag=file id=13 /]

Irrigating with mine water

Post-mining redevelopment efforts in Butte rely on the availability of water to irrigate vegetation on reclaimed and capped areas. Water recovered from the Belmont mine and other parts of the flooded underground mine workings is a possible source of irrigation water that would reduce the stress on the city water supply, leaving more water in the Big Hole River.

Butte-Silver Bow recently received a grant from the Montana Department of Natural Resources and Conservation to demonstrate a treatment system at the Belmont Mine on East Mercury Street to determine if it is cost-effective to treat mine water to meet irrigation standards. Following a trial irrigation conducted by MERDI in 2004, a pumping test and treatability study were performed by MSE under the federal Mine Waste Technology Program in 2007 to characterize the water at the Belmont. Results indicated that this water could meet irrigation standards with three unit operations: oxidation, pH adjustment, and solid/liquid separation.

The results of optimized treatment from the treatability tests met target irrigation levels. If the demonstration of the water treatment system and trial irrigation are successful this summer, beneficial reuse of water in the underground mine workings could become a reality and lead to a greener Butte.